Pain and purinergic signaling

Makoto Tsuda, Hidetoshi Tozaki-Saitoh, Kazuhide Inoue

研究成果: ジャーナルへの寄稿総説査読

117 被引用数 (Scopus)


A growing body of evidence indicates that extracellular nucleotides play important roles in the regulation of neuronal and glial functions in the nervous system through P2 purinoceptors. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y). P2X receptors (seven types; P2X1-P2X7) contain intrinsic pores that open by binding with ATP, and P2Y receptors (eight types; P2Y1, 2, 4, 6, 11, 12, 13 and 14) are activated by nucleotides and couple to intracellular second-messenger systems through heterotrimeric G-proteins. Nucleotides are released or leaked from non-excitable cells as well as neurons in physiological and pathophysiological conditions. Studies have shown that microglia, a type of glial cells known as resident macrophages in the CNS, express several subtypes of P2X and P2Y receptors, and these receptors play a key role in pain signaling in the spinal cord under pathological conditions such as by peripheral nerve injury (called neuropathic pain). Within the spinal dorsal horn, peripheral nerve injury leads to a progressive series of changes in microglia including morphological hypertrophy of the cell body and proliferation, which are considered indicative of activation. These activated microglia upregulate expression of P2X/Y receptors (e.g., P2X4 and P2Y12). Importantly, pharmacological, molecular and genetic manipulations of the function or expression of these microglial molecules strongly suppress neuropathic pain. We expect that further investigation to determine how ATP signaling via P2X receptors participates in the pathogenesis of chronic pain will lead to a better understanding of the molecular mechanisms of pathological pain and provide clues for the development of new therapeutic drugs.

ジャーナルBrain Research Reviews
出版ステータス出版済み - 5月 2010

!!!All Science Journal Classification (ASJC) codes

  • 神経科学(全般)
  • 臨床神経学


「Pain and purinergic signaling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。