Optimal portfolio of low liquid assets with a log-utility function

研究成果: ジャーナルへの寄稿学術誌査読

23 被引用数 (Scopus)

抄録

In the real market an asset is not completely liquid. An investor should plan a strategy on the grounds that an asset cannot always be traded. In this paper we consider the classical Merton wealth problem, but the risky asset is not completely liquid. The liquidity is represented by the success rate of the trade and the investor can trade the asset at distributed exponentially random times. We find the value function and exhibit a procedure for an asymptotic expansion of the optimal strategy. Further we reveal some characteristics of the optimal strategy by a numerical analysis.

本文言語英語
ページ(範囲)121-145
ページ数25
ジャーナルFinance and Stochastics
10
1
DOI
出版ステータス出版済み - 1月 2006

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • 財務
  • 統計学、確率および不確実性

フィンガープリント

「Optimal portfolio of low liquid assets with a log-utility function」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル