On the universal deformations for SL2-representations of knot groups

Masanori Morishita, Yu Takakura, Yuji Terashima, Jun Ueki

    研究成果: ジャーナルへの寄稿学術誌査読

    5 被引用数 (Scopus)

    抄録

    Based on the analogies between knot theory and number theory, we study a deformation theory for SL2-representations of knot groups, following after Mazur's deformation theory of Galois representations. Firstly, by employing the pseudo-SL2-representations, we prove the existence of the universal deformation of a given SL2-representation of a finitely generated group π over a perfect field k whose characteristic is not 2. We then show its connection with the character scheme for SL2-representations of π when k is an algebraically closed field. We investigate examples concerning Riley representations of 2-bridge knot groups and give explicit forms of the universal deformations. Finally we discuss the universal deformation of the holonomy representation of a hyperbolic knot group in connection with Thurston's theory on deformations of hyperbolic structures.

    本文言語英語
    ページ(範囲)67-84
    ページ数18
    ジャーナルTohoku Mathematical Journal
    69
    1
    DOI
    出版ステータス出版済み - 3月 2017

    !!!All Science Journal Classification (ASJC) codes

    • 数学一般

    フィンガープリント

    「On the universal deformations for SL2-representations of knot groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル