抄録
We study the asymptotic distribution of S-integral points on affine homogeneous spaces in the light of the Hardy-Littlewood property introduced by Borovoi and Rudnick. We introduce the S-Hardy-Littlewood property for affine homogeneous spaces defined over an algebraic number field and a finite set S of places of the base field. We work with the adelic harmonic analysis on affine algebraic groups over a number field to determine the asymptotic density of S-integral points under congruence conditions. We give some new examples of strongly or relatively S-Hardy-Littlewood homogeneous spaces over number fields. As an application, we prove certain asymptotically uniform distribution property of integral points on an ellipsoid defined by a totally positive definite tenary quadratic form over a totally real number field.
本文言語 | 英語 |
---|---|
ページ(範囲) | 723-757 |
ページ数 | 35 |
ジャーナル | International Journal of Mathematics |
巻 | 9 |
号 | 3 |
DOI | |
出版ステータス | 出版済み - 9月 1998 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 数学一般