Object tracking system by integrating multi-sensored data

Kouji Murakami, Tokuo Tsuji, Tsutomu Hasegawa, Ryo Kurazume

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

4 被引用数 (Scopus)

抄録

We propose an object tracking system which recognizes everyday objects and estimates their positions by using distributed sensors in a room and mobile robots. The placement of objects is frequently changed according to human activities. Although a passive RFID tag is attached to each object for the object's recognition, the placement is often not uniquely determined due to the deficiency of measured data. We have already proposed a method for estimating the placement of objects by using the moving trajectories of objects. This estimation result is expressed as the probability distribution of the object placement. However intersections of trajectories cause the decrease of the estimation accuracy. So we propose a new method based on Bayesian inference to improve the estimation accuracy by using the size and the shape of an object measured by laser range finder. Then a mobile robot settles the placement with small workload by using the mounted sensor. The system successfully recognized and localized 10 objects in the experiment.

本文言語英語
ホスト出版物のタイトルProceedings of the IECON 2016 - 42nd Annual Conference of the Industrial Electronics Society
出版社IEEE Computer Society
ページ747-754
ページ数8
ISBN(電子版)9781509034741
DOI
出版ステータス出版済み - 12月 21 2016
イベント42nd Conference of the Industrial Electronics Society, IECON 2016 - Florence, イタリア
継続期間: 10月 24 201610月 27 2016

出版物シリーズ

名前IECON Proceedings (Industrial Electronics Conference)

その他

その他42nd Conference of the Industrial Electronics Society, IECON 2016
国/地域イタリア
CityFlorence
Period10/24/1610/27/16

!!!All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Object tracking system by integrating multi-sensored data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル