Object classification with range and reflectance data from a single laser scanner

Shuji Oishi, Naoaki Kondo, Ryo Kurazume

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

This paper presents a new object classification technique for 3D point cloud data acquired with a laser scanner. In general, it is not straightforward to distinguish objects that have similar 3D structures but belong to different categories based only on the range data. To tackle this issue, we focus on laser reflectance obtained as a side product of range measurement by a laser scanner. Since laser reflectance contains appearance information, the proposed method classifies objects based on not only geometrical features in range data but also appearance features in reflectance data, both of which are acquired by a single laser scanner. Furthermore, we extend the conventional Histogram of Oriented Gradients (HOG) so that it couples geometrical and appearance information more tightly. Experiments show the proposed technique combining geometrical and appearance information outperforms conventional techniques.

本文言語英語
ホスト出版物のタイトルThirteenth International Conference on Quality Control by Artificial Vision 2017
編集者Atsushi Yamashita, Hajime Nagahara, Kazunori Umeda
出版社SPIE
ISBN(電子版)9781510611214
DOI
出版ステータス出版済み - 2017
イベント13th International Conference on Quality Control by Artificial Vision, QCAV 2017 - Tokyo, 日本
継続期間: 5月 14 20175月 16 2017

出版物シリーズ

名前Proceedings of SPIE - The International Society for Optical Engineering
10338
ISSN(印刷版)0277-786X
ISSN(電子版)1996-756X

その他

その他13th International Conference on Quality Control by Artificial Vision, QCAV 2017
国/地域日本
CityTokyo
Period5/14/175/16/17

!!!All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学

フィンガープリント

「Object classification with range and reflectance data from a single laser scanner」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル