TY - GEN
T1 - Numerical Simulations of Wake Flows of Wind Farm with Fourteen Wind Turbines
AU - Duan, Xinze
AU - Cheng, Ping
AU - Wan, Decheng
AU - Hu, Changhong
N1 - Publisher Copyright:
Copyright © 2018 by the International Society of Offshore and Polar Engineers (ISOPE)
PY - 2018
Y1 - 2018
N2 - The wake interaction phenomenon among wind turbines has a great influence on aerodynamic power output, wind speed deficit turbulence stress and wake vortex structure, which indicates that more attention should be placed on the wake interaction for the optimal arrangement of wind farm. In this present study, firstly a numerical validation of aerodynamics for the two offset model wind turbines using actuator line model and CFD technique. The results obtained from the present simulations are compared to the data from the experiment “Blind Test 3” and other simulation models. Based on the simulations results, the present study shows good agreement with the experimental results. Then considering the uniform inflow condition, the complex phenomenon of wake interaction in wind farm containing fourteen wind turbines is simulated using a numerical method. Large eddy simulations combined with an actuator line model are conducted in the in-house CFD code FOWT-UALM-SJTU Solver. The motivation for this work is to create a sound methodology for performing the simulation of large wind farms. To better understand the wake interaction phenomenon, the aerodynamic power coefficients and basic features of both the near and far wake, including the distribution characteristics of the mean wake velocity and vortex structures are studied in detail.
AB - The wake interaction phenomenon among wind turbines has a great influence on aerodynamic power output, wind speed deficit turbulence stress and wake vortex structure, which indicates that more attention should be placed on the wake interaction for the optimal arrangement of wind farm. In this present study, firstly a numerical validation of aerodynamics for the two offset model wind turbines using actuator line model and CFD technique. The results obtained from the present simulations are compared to the data from the experiment “Blind Test 3” and other simulation models. Based on the simulations results, the present study shows good agreement with the experimental results. Then considering the uniform inflow condition, the complex phenomenon of wake interaction in wind farm containing fourteen wind turbines is simulated using a numerical method. Large eddy simulations combined with an actuator line model are conducted in the in-house CFD code FOWT-UALM-SJTU Solver. The motivation for this work is to create a sound methodology for performing the simulation of large wind farms. To better understand the wake interaction phenomenon, the aerodynamic power coefficients and basic features of both the near and far wake, including the distribution characteristics of the mean wake velocity and vortex structures are studied in detail.
UR - http://www.scopus.com/inward/record.url?scp=85053468244&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053468244&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85053468244
SN - 9781880653876
T3 - Proceedings of the International Offshore and Polar Engineering Conference
SP - 519
EP - 526
BT - Proceedings of the 28th International Ocean and Polar Engineering Conference, ISOPE 2018
PB - International Society of Offshore and Polar Engineers
T2 - 28th International Ocean and Polar Engineering Conference, ISOPE 2018
Y2 - 10 June 2018 through 15 June 2018
ER -