TY - JOUR
T1 - Nucleic acid G-quartets
T2 - Insights into diverse patterns and optical properties
AU - Jissy, A. K.
AU - Ashik, U. P.M.
AU - Datta, Ayan
PY - 2011/6/30
Y1 - 2011/6/30
N2 - Structures of various conformers of G-quartets (G4) with different types of hydrogen bonding patterns have been investigated through various levels of Density Functional Theory (DFT). Their structure and stability has been compared with the diad (G2), triad (G3), pentad (G5) and hexad (G6) of guanine. The calculations show that G4 has the highest stabilization through hydrogen-bond interaction which explains the tendency of guanine rich strands in the telomeric region to favor the formation of the quadruplex structure. We have also performed calculations for Li+, Na+, K+, Be2+, Mg2+ and Ca2+ complexes of G4. Calculations show that for an isolated quartet, the metal ion with the smallest ionic radius in their respective groups (IA and IIA) form more stable complexes. Other properties such as the HOMO-LUMO gap and polarizability have also been analyzed. The variation in the polarizability has been studied with respect to the movement of cations along the central cavity of the quartet. Such movement leads to a large anisotropy of polarization and hence the refractive index (η) thereby creating optical birefringence which have potential applications in biomolecular imaging.
AB - Structures of various conformers of G-quartets (G4) with different types of hydrogen bonding patterns have been investigated through various levels of Density Functional Theory (DFT). Their structure and stability has been compared with the diad (G2), triad (G3), pentad (G5) and hexad (G6) of guanine. The calculations show that G4 has the highest stabilization through hydrogen-bond interaction which explains the tendency of guanine rich strands in the telomeric region to favor the formation of the quadruplex structure. We have also performed calculations for Li+, Na+, K+, Be2+, Mg2+ and Ca2+ complexes of G4. Calculations show that for an isolated quartet, the metal ion with the smallest ionic radius in their respective groups (IA and IIA) form more stable complexes. Other properties such as the HOMO-LUMO gap and polarizability have also been analyzed. The variation in the polarizability has been studied with respect to the movement of cations along the central cavity of the quartet. Such movement leads to a large anisotropy of polarization and hence the refractive index (η) thereby creating optical birefringence which have potential applications in biomolecular imaging.
UR - http://www.scopus.com/inward/record.url?scp=84961982113&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84961982113&partnerID=8YFLogxK
U2 - 10.1021/jp202401b
DO - 10.1021/jp202401b
M3 - Article
AN - SCOPUS:84961982113
SN - 1932-7447
VL - 115
SP - 12530
EP - 12546
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 25
ER -