TY - JOUR
T1 - Noradrenaline Synergistically Enhances Porphyromonas gingivalis LPS and OMV-Induced Interleukin-1β Production in BV-2 Microglia Through Differential Mechanisms
AU - Muramoto, Sakura
AU - Shimizu, Sachi
AU - Shirakawa, Sumika
AU - Ikeda, Honoka
AU - Miyamoto, Sayaka
AU - Jo, Misato
AU - Takemori, Uzuki
AU - Morimoto, Chiharu
AU - Wu, Zhou
AU - Saitoh, Hidetoshi
AU - Oda, Kosuke
AU - Inoue, Erika
AU - Nonaka, Saori
AU - Nakanishi, Hiroshi
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/3
Y1 - 2025/3
N2 - Infection with Porphyromonas gingivalis (Pg), which is a major periodontal pathogen, causes a large number of systemic diseases based on chronic inflammation such as diabetes and Alzheimer’s disease (AD). However, it is not yet fully understood how Pg can augment local systemic immune and inflammatory responses during progression of AD. There is a strong association between depression and elevated levels of inflammation. Noradrenaline (NA) is a key neurotransmitter that modulates microglial activation during stress conditions. In this study, we have thus investigated the regulatory mechanisms of NA on the production of interleukin-1β (IL-1β) by microglia following stimulation with Pg virulence factors, lipopolysaccharide (LPS), and outer membrane vesicles (OMVs). NA (30–1000 nM) significantly enhanced the mRNA level, promoter activity, and protein level of IL-1β up to 20-fold in BV-2 microglia following treatment with Pg LPS (10 μg/mL) and OMVs (150 μg of protein/mL) in a dose-dependent manner. Pharmacological studies have suggested that NA synergistically augments the responses induced by Pg LPS and OMVs through different mechanisms. AP-1 is activated by the β2 adrenergic receptor (Aβ2R)-mediated pathway. NF-κB, which is activated by the Pg LPS/toll-like receptor 2-mediated pathway, is required for the synergistic effect of NA on the Pg LPS-induced IL-1β production by BV-2 microglia. Co-immunoprecipitation combined with Western blotting and the structural models generated by AlphaFold2 suggested that cross-coupling of NF-κB p65 and AP-1 c-Fos transcription factors enhances the binding of NF-κB p65 to the IκB site, resulting in the synergistic augmentation of the IL-1β promoter activity. In contrast, OMVs were phagocytosed by BV-2 microglia and then activated the TLR9/p52/RelB-mediated pathway. The Aβ2R/Epac-mediated pathway, which promotes phagosome maturation, may be responsible for the synergistic effect of NA on the OMV-induced production of IL-1β in BV-2 microglia. Our study provides the first evidence that NA synergistically enhances the production of IL-1β in response to Pg LPS and OMVs through distinct mechanisms.
AB - Infection with Porphyromonas gingivalis (Pg), which is a major periodontal pathogen, causes a large number of systemic diseases based on chronic inflammation such as diabetes and Alzheimer’s disease (AD). However, it is not yet fully understood how Pg can augment local systemic immune and inflammatory responses during progression of AD. There is a strong association between depression and elevated levels of inflammation. Noradrenaline (NA) is a key neurotransmitter that modulates microglial activation during stress conditions. In this study, we have thus investigated the regulatory mechanisms of NA on the production of interleukin-1β (IL-1β) by microglia following stimulation with Pg virulence factors, lipopolysaccharide (LPS), and outer membrane vesicles (OMVs). NA (30–1000 nM) significantly enhanced the mRNA level, promoter activity, and protein level of IL-1β up to 20-fold in BV-2 microglia following treatment with Pg LPS (10 μg/mL) and OMVs (150 μg of protein/mL) in a dose-dependent manner. Pharmacological studies have suggested that NA synergistically augments the responses induced by Pg LPS and OMVs through different mechanisms. AP-1 is activated by the β2 adrenergic receptor (Aβ2R)-mediated pathway. NF-κB, which is activated by the Pg LPS/toll-like receptor 2-mediated pathway, is required for the synergistic effect of NA on the Pg LPS-induced IL-1β production by BV-2 microglia. Co-immunoprecipitation combined with Western blotting and the structural models generated by AlphaFold2 suggested that cross-coupling of NF-κB p65 and AP-1 c-Fos transcription factors enhances the binding of NF-κB p65 to the IκB site, resulting in the synergistic augmentation of the IL-1β promoter activity. In contrast, OMVs were phagocytosed by BV-2 microglia and then activated the TLR9/p52/RelB-mediated pathway. The Aβ2R/Epac-mediated pathway, which promotes phagosome maturation, may be responsible for the synergistic effect of NA on the OMV-induced production of IL-1β in BV-2 microglia. Our study provides the first evidence that NA synergistically enhances the production of IL-1β in response to Pg LPS and OMVs through distinct mechanisms.
KW - activator protein 1
KW - BV2 microglia
KW - interleukin-1β
KW - lipopolysaccharide
KW - noradrenaline
KW - nuclear factor-κB
KW - outer membrane vesicles
KW - Porphyromonas gingivalis
KW - synergistic augmentation
UR - http://www.scopus.com/inward/record.url?scp=105001101848&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105001101848&partnerID=8YFLogxK
U2 - 10.3390/ijms26062660
DO - 10.3390/ijms26062660
M3 - Article
C2 - 40141302
AN - SCOPUS:105001101848
SN - 1661-6596
VL - 26
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 6
M1 - 2660
ER -