Nonlinear Schrödinger model with boundary, integrability and scattering matrix based on the degenerate affine hecke algebra

Yasushi Komori, Kazuhiro Hikami

研究成果: ジャーナルへの寄稿学術誌査読

7 被引用数 (Scopus)

抄録

The δ-function interacting many-body systems (nonlinear Schrödinger models) on an infinite interval and with boundary are studied by use of the integrable differential-difference operators, so-called Dunkl operators. These models are related with the classical root systems of type A and BC, and we give a systematic method to construct these integrable operators. This method is based on the infinite-dimensional representation for solutions of the classical Yang-Baxter equation and the classical reflection equation. In addition the scattering matrices of the boundary nonlinear Schrödinger model are investigated.

本文言語英語
ページ(範囲)5397-5410
ページ数14
ジャーナルInternational Journal of Modern Physics A
12
30
DOI
出版ステータス出版済み - 1997
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 原子分子物理学および光学
  • 核物理学および高エネルギー物理学
  • 天文学と天体物理学

フィンガープリント

「Nonlinear Schrödinger model with boundary, integrability and scattering matrix based on the degenerate affine hecke algebra」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル