Nonlinear logistic discrimination via regularized gaussian basis expansions

Shuichi Kawano, Sadanori Konishi

研究成果: ジャーナルへの寄稿学術誌査読

3 被引用数 (Scopus)

抄録

We consider the problem of constructing multi-class classification methods for analyzing data with complex structure. A nonlinear logistic discriminant model is introduced based on Gaussian basis functions constructed by the self-organizing map. In order to select adjusted parameters, we employ model selection criteria derived from information-theoretic and Bayesian approaches. Numerical examples are conducted to investigate the performance of the proposed multi-class discriminant procedure. Our modeling procedure is also applied to protein structure recognition in life science. The results indicate the effectiveness of our strategy in terms of prediction accuracy.

本文言語英語
ページ(範囲)1414-1425
ページ数12
ジャーナルCommunications in Statistics: Simulation and Computation
38
7
DOI
出版ステータス出版済み - 8月 2009

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • モデリングとシミュレーション

フィンガープリント

「Nonlinear logistic discrimination via regularized gaussian basis expansions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル