抄録
The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the "Chern character" on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Lüscher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions.
本文言語 | 英語 |
---|---|
ページ(範囲) | 643-660 |
ページ数 | 18 |
ジャーナル | Nuclear Physics B |
巻 | 569 |
号 | 1-3 |
DOI | |
出版ステータス | 出版済み - 3月 13 2000 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 核物理学および高エネルギー物理学