Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories

Takanori Fujiwara, Hiroshi Suzuki, Ke Wu

研究成果: ジャーナルへの寄稿学術誌査読

34 被引用数 (Scopus)

抄録

The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the "Chern character" on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Lüscher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions.

本文言語英語
ページ(範囲)643-660
ページ数18
ジャーナルNuclear Physics B
569
1-3
DOI
出版ステータス出版済み - 3月 13 2000
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 核物理学および高エネルギー物理学

フィンガープリント

「Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル