Noise-estimate Particle PHD filter

Masanori Ishibashi, Yumi Iwashita, Ryo Kurazume

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

This paper proposes a new radar tracking filter named Noise-estimate Particle PHD Filter (NP-PHDF). Kalman filter and particle filter are popular filtering techniques for target tracking. However, the tracking performance of the Kalman filter severely depends on the setting of several parameters such as system noise and observation noise. It is an open problem how to choose proper parameters for various scenarios, and they are often regulated in trial-and-error manner. To tackle this problem, Noise-estimate Particle Filter (NPF) has been proposed so far. The NPF estimates proper noise parameters of a Kalman filter on-line based on a scheme of particle filter. In this paper, we extend the NPF so that it enables to track multiple targets simultaneously by combining with Probability Hypothesis Density (PHD) filter, and propose a new Noise-estimate Particle PHD Filter (NP-PHDF). Simulation results show that the proposed filter has higher tracking performance in various scenarios than conventional Kalman filter, particle filter, and PHD filter for multiple-targets tracking.

本文言語英語
ホスト出版物のタイトルWorld Automation Congress Proceedings
出版社IEEE Computer Society
ページ784-789
ページ数6
ISBN(電子版)9781889335490
DOI
出版ステータス出版済み - 10月 24 2014
イベント2014 World Automation Congress, WAC 2014 - Waikoloa, 米国
継続期間: 8月 3 20148月 7 2014

出版物シリーズ

名前World Automation Congress Proceedings
ISSN(印刷版)2154-4824
ISSN(電子版)2154-4832

その他

その他2014 World Automation Congress, WAC 2014
国/地域米国
CityWaikoloa
Period8/3/148/7/14

!!!All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学

フィンガープリント

「Noise-estimate Particle PHD filter」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル