TY - JOUR
T1 - New insights into the functions of enamel matrices in calcified tissues
AU - Fukumoto, Satoshi
AU - Nakamura, Takashi
AU - Yamada, Aya
AU - Arakaki, Makiko
AU - Saito, Kan
AU - Xu, Juan
AU - Fukumoto, Emiko
AU - Yamada, Yoshihiko
PY - 2014/5
Y1 - 2014/5
N2 - Ameloblasts secrete enamel matrix proteins, including amelogenin, ameloblastin, enamelin, amelotin, and Apin/odontogenic ameloblast-associated protein (Apin/ODAM). Amelogenin is the major protein component of the enamel matrix. Amelogenin, ameloblastin, and enamelin are expressed during the secretory stage of ameloblast, while amelotin and Apin/ODAM are expressed during the maturation. Amelogenin and ameloblastin are also expressed in osteoblasts, and they regulate bone formation. In addition, recent studies show the importance of protein-protein interactions between enamel matrix components for enamel formation. In a mouse model mimicking a mutation of the amelogenin gene in amelogenesis imperfect (AI) in humans, the mutated amelogenin forms a complex with ameloblastin, which accumulates in the endoplasmic reticulum/Golgi apparatus and causes ameloblast dysfunction resulting in AI phenotypes. Ameloblastin is a cell adhesion molecule that regulates cell proliferation. It inhibits odontogenic tumor formation and regulates osteoblast differentiation through binding to CD63. Amelotin interacts with Apin/ODAM, but not ameloblastin, while Apin/ODAM binds to ameloblastin. These interactions may be important for enamel mineralization during amelogenesis. The enamel matrix genes are clustered on human chromosome 4 except for the amelogenin genes located on the sex chromosomes. Genes for these enamel matrix proteins evolved from a common ancestral gene encoding secretory calcium-binding phosphoprotein.
AB - Ameloblasts secrete enamel matrix proteins, including amelogenin, ameloblastin, enamelin, amelotin, and Apin/odontogenic ameloblast-associated protein (Apin/ODAM). Amelogenin is the major protein component of the enamel matrix. Amelogenin, ameloblastin, and enamelin are expressed during the secretory stage of ameloblast, while amelotin and Apin/ODAM are expressed during the maturation. Amelogenin and ameloblastin are also expressed in osteoblasts, and they regulate bone formation. In addition, recent studies show the importance of protein-protein interactions between enamel matrix components for enamel formation. In a mouse model mimicking a mutation of the amelogenin gene in amelogenesis imperfect (AI) in humans, the mutated amelogenin forms a complex with ameloblastin, which accumulates in the endoplasmic reticulum/Golgi apparatus and causes ameloblast dysfunction resulting in AI phenotypes. Ameloblastin is a cell adhesion molecule that regulates cell proliferation. It inhibits odontogenic tumor formation and regulates osteoblast differentiation through binding to CD63. Amelotin interacts with Apin/ODAM, but not ameloblastin, while Apin/ODAM binds to ameloblastin. These interactions may be important for enamel mineralization during amelogenesis. The enamel matrix genes are clustered on human chromosome 4 except for the amelogenin genes located on the sex chromosomes. Genes for these enamel matrix proteins evolved from a common ancestral gene encoding secretory calcium-binding phosphoprotein.
UR - http://www.scopus.com/inward/record.url?scp=84897104937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897104937&partnerID=8YFLogxK
U2 - 10.1016/j.jdsr.2014.01.001
DO - 10.1016/j.jdsr.2014.01.001
M3 - Review article
AN - SCOPUS:84897104937
SN - 1882-7616
VL - 50
SP - 47
EP - 54
JO - Japanese Dental Science Review
JF - Japanese Dental Science Review
IS - 2
ER -