抄録
In this paper, the new equilibria realized by continuous optimal control inputs and the dynamic structure around them are studied. Using the Euler–Lagrange equation, which is a necessary condition for optimal control problems, the equations of motion of a dynamic system with optimal control inputs that minimize the quadratic cost function are described in terms of state and adjoint variables. Based on the equations of motion, equilibrium conditions are derived, and the properties of equilibria are analyzed for the two-body and Hill three-body problems. The stability and dynamic structure around unstable equilibria are also characterized to get insights into the properties of optimal trajectories.
本文言語 | 英語 |
---|---|
ページ(範囲) | 2029-2040 |
ページ数 | 12 |
ジャーナル | Journal of Guidance, Control, and Dynamics |
巻 | 47 |
号 | 10 |
DOI | |
出版ステータス | 出版済み - 10月 2024 |
!!!All Science Journal Classification (ASJC) codes
- 制御およびシステム工学
- 航空宇宙工学
- 宇宙惑星科学
- 応用数学
- 電子工学および電気工学