Neural network based a two phase interleaved boost converter for photovoltaic system

Donny Radianto, Masahito Shoyama

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

9 被引用数 (Scopus)

抄録

This paper presents Neural Network (NN) based A Two-Phase Interleaved Boost Converter (IBC) for Photovoltaic (PV) system. As known that this converter is the development of boost converter. In addition, it also functions to reduce output ripple current as well as to increase the output voltage of converter. This converter is driven by Pulse Width Modulation (PWM) which is governed by using controller based on NN. NN has two inputs including solar irradiance (G) and Temperature (T) and one output. The system is validated by a comparison between the proposed system with Fuzzy Logic Controller (FLC) in changing climate conditions. From the simulation results, the proposed system can provide higher voltage than FLC. In addition, the proposed system can shorten the steady state condition and can reduce voltage oscillations.

本文言語英語
ホスト出版物のタイトル3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014
出版社Institute of Electrical and Electronics Engineers Inc.
ページ430-434
ページ数5
ISBN(電子版)9781479937950
DOI
出版ステータス出版済み - 1月 20 2014
イベント3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014 - Milwaukee, 米国
継続期間: 10月 19 201410月 22 2014

出版物シリーズ

名前3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014

その他

その他3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014
国/地域米国
CityMilwaukee
Period10/19/1410/22/14

!!!All Science Journal Classification (ASJC) codes

  • 再生可能エネルギー、持続可能性、環境

フィンガープリント

「Neural network based a two phase interleaved boost converter for photovoltaic system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル