抄録
We consider the problem of extracting a common structure from multiple tensor data sets. For this purpose, we propose multilinear common component analysis (MCCA) based on Kronecker products of mode-wise covariance matrices. MCCA constructs a common basis represented by linear combinations of the original variables that lose little information of the multiple tensor data sets. We also develop an estimation algorithm for MCCA that guarantees mode-wise global convergence. Numerical studies are conducted to show the effectiveness of MCCA.
本文言語 | 英語 |
---|---|
ページ(範囲) | 2853-2880 |
ページ数 | 28 |
ジャーナル | Neural Computation |
巻 | 33 |
号 | 10 |
DOI | |
出版ステータス | 出版済み - 9月 16 2021 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 人文科学(その他)
- 認知神経科学