Multilinear common component analysis via Kronecker product representation

Kohei Yoshikawa, Shuichi Kawano

研究成果: ジャーナルへの寄稿レター査読

抄録

We consider the problem of extracting a common structure from multiple tensor data sets. For this purpose, we propose multilinear common component analysis (MCCA) based on Kronecker products of mode-wise covariance matrices. MCCA constructs a common basis represented by linear combinations of the original variables that lose little information of the multiple tensor data sets. We also develop an estimation algorithm for MCCA that guarantees mode-wise global convergence. Numerical studies are conducted to show the effectiveness of MCCA.

本文言語英語
ページ(範囲)2853-2880
ページ数28
ジャーナルNeural Computation
33
10
DOI
出版ステータス出版済み - 9月 16 2021
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 人文科学(その他)
  • 認知神経科学

フィンガープリント

「Multilinear common component analysis via Kronecker product representation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル