TY - JOUR
T1 - Monitoring tropical forest change using tree canopy cover time series obtained from Sentinel-1 and Sentinel-2 data
AU - Li, Zhe
AU - Ota, Tetsuji
AU - Mizoue, Nobuya
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2024
Y1 - 2024
N2 - The most practical method for monitoring forest change over large areas is using remotely sensed data. However, given that current techniques are somewhat weak for monitoring small-scale forest disturbances, achieving accurate monitoring remains challenging, especially in tropical areas where selective and illegal logging occurs frequently. To further improve the ability to monitor forest changes, we estimated tree canopy cover (TCC) using Sentinel-1 and Sentinel-2 data. We developed an approach to monitor forest change on the obtained TCC time series. This approach was applied to monitor forest change in the Bago Mountains of Myanmar from 2017 to 2021. We then completed accuracy assessments and area estimation using reference data obtained from stratified random sampling and unbiased estimators. The final results indicated that: (1) in TCC estimation, Sentinel-1 played a limited role; the red-edge bands of Sentinel-2 achieved slightly different results to the other bands, and superior results were obtained by using all bands; (2) our method successfully mapped forest change with the overall accuracy of 93%. Furthermore, compared with the most widely used and the most recent approaches, our method was better at capturing forest disturbances.
AB - The most practical method for monitoring forest change over large areas is using remotely sensed data. However, given that current techniques are somewhat weak for monitoring small-scale forest disturbances, achieving accurate monitoring remains challenging, especially in tropical areas where selective and illegal logging occurs frequently. To further improve the ability to monitor forest changes, we estimated tree canopy cover (TCC) using Sentinel-1 and Sentinel-2 data. We developed an approach to monitor forest change on the obtained TCC time series. This approach was applied to monitor forest change in the Bago Mountains of Myanmar from 2017 to 2021. We then completed accuracy assessments and area estimation using reference data obtained from stratified random sampling and unbiased estimators. The final results indicated that: (1) in TCC estimation, Sentinel-1 played a limited role; the red-edge bands of Sentinel-2 achieved slightly different results to the other bands, and superior results were obtained by using all bands; (2) our method successfully mapped forest change with the overall accuracy of 93%. Furthermore, compared with the most widely used and the most recent approaches, our method was better at capturing forest disturbances.
UR - http://www.scopus.com/inward/record.url?scp=85184248851&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85184248851&partnerID=8YFLogxK
U2 - 10.1080/17538947.2024.2312222
DO - 10.1080/17538947.2024.2312222
M3 - Article
AN - SCOPUS:85184248851
SN - 1753-8947
VL - 17
JO - International Journal of Digital Earth
JF - International Journal of Digital Earth
IS - 1
M1 - 2312222
ER -