TY - GEN
T1 - Molecularly imprinted polymer coated Au nanoparticle sensor for α-pinene vapor detection
AU - Chen, Bin
AU - Liu, Chuanjun
AU - Sun, Xiao
AU - Hayashi, Kenshi
N1 - Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.
PY - 2013
Y1 - 2013
N2 - The sensing characteristics of molecularly imprinted polymer (MIP) coated Au nanoparticle (AuNP) sensors were adopted to detect α-pinene vapor. MIP was prepared by using methacrylic acid (MAA) as monomer, ethylene glycol dimethylacrylate (EGDMA) as cross-linker, and α-pinene as template. The MIP adsorption character was evaluated using GC-MS. The result demonstrated that the vapor adsorption amount of MIP is two times larger than that of non-imprinted polymer (NIP). The pre-polymerized MIP mixture was coated on ion-sputtered AuNPs substrate to fabricate the MIP-coated AuNP sensor. The influence of polymer thickness on the UV-vis spectra and the refractive index sensitivity (RIS) of MIP coated AuNP sensor were investigated. The coating of MIP resulted in a red shift of the Plasmon absorbance peak. The RIS of MIP coated AuNP sensor was higher than that of NIP coated one when the polymer thickness was controlled in the sensitive range of AuNPs. LSPR response of polymer-coated AuNP sensors exposure to α-pinene vapor was verified to be rapid, reversible, and reproducible.
AB - The sensing characteristics of molecularly imprinted polymer (MIP) coated Au nanoparticle (AuNP) sensors were adopted to detect α-pinene vapor. MIP was prepared by using methacrylic acid (MAA) as monomer, ethylene glycol dimethylacrylate (EGDMA) as cross-linker, and α-pinene as template. The MIP adsorption character was evaluated using GC-MS. The result demonstrated that the vapor adsorption amount of MIP is two times larger than that of non-imprinted polymer (NIP). The pre-polymerized MIP mixture was coated on ion-sputtered AuNPs substrate to fabricate the MIP-coated AuNP sensor. The influence of polymer thickness on the UV-vis spectra and the refractive index sensitivity (RIS) of MIP coated AuNP sensor were investigated. The coating of MIP resulted in a red shift of the Plasmon absorbance peak. The RIS of MIP coated AuNP sensor was higher than that of NIP coated one when the polymer thickness was controlled in the sensitive range of AuNPs. LSPR response of polymer-coated AuNP sensors exposure to α-pinene vapor was verified to be rapid, reversible, and reproducible.
UR - http://www.scopus.com/inward/record.url?scp=84893921107&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893921107&partnerID=8YFLogxK
U2 - 10.1109/ICSENS.2013.6688152
DO - 10.1109/ICSENS.2013.6688152
M3 - Conference contribution
AN - SCOPUS:84893921107
SN - 9781467346405
T3 - Proceedings of IEEE Sensors
BT - IEEE SENSORS 2013 - Proceedings
PB - IEEE Computer Society
T2 - 12th IEEE SENSORS 2013 Conference
Y2 - 4 November 2013 through 6 November 2013
ER -