Modeling dynamic power generation from ocean waves in the Kingdom of Tonga: A comprehensive analysis using integrated mechanical and electrical framework

Latu Uliafu Bloomfield, Hooman Farzaneh

研究成果: ジャーナルへの寄稿学術誌査読

抄録

Globally, ocean wave energy can significantly reduce carbon dioxide emissions from the electricity generation sector. Wave energy converters (WECs) could be installed in the Kingdom of Tonga, which is surrounded by ocean, where the average wave energy flux is greater than 7 kW/m. There is a lack of feasibility studies in this area due to the unavailability of measured data on wave parameters and properties; hence, the potential of WEC is yet to be discovered or exploited. This study proposes an integrated mechanical and electrical modeling framework to analyze the impact of wave characteristics on dynamic power generation in three main islands of Tonga, including ‘Eua, Tongatapu, and Niuafo'ou. The mechanical simulation involves using a 2D Fourier wave model to identify the important factors that affect the power potential of ocean waves, such as wave height and period. The wave model is linked to a comprehensive electrical simulation model developed in Matlab Simulink, which includes a permanent magnet linear synchronous generator (PMLSG), rectifier, buck converter, inverter, and load to estimate the electrical power potential per 1 m2 of ocean area. According to the findings, in ‘Eua, the maximum annual generation intensity output is 90.45 kWh/m2, whereas in Niuafo'ou, the minimum is 48.5 kWh/m2. Applying this to a region (12.57 m2) where a WEC has been deployed in Australia, the highest yearly electricity generation in ‘Eua ranges between 926.41 and 1136.96 kWh/y, but in Tongatapu and Niuafo'ou, it ranges between around 610 and 899 kWh/y.

本文言語英語
論文番号100603
ジャーナルEnergy Conversion and Management: X
22
DOI
出版ステータス出版済み - 4月 2024

!!!All Science Journal Classification (ASJC) codes

  • 再生可能エネルギー、持続可能性、環境
  • 原子力エネルギーおよび原子力工学
  • 燃料技術
  • エネルギー工学および電力技術

フィンガープリント

「Modeling dynamic power generation from ocean waves in the Kingdom of Tonga: A comprehensive analysis using integrated mechanical and electrical framework」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル