Model selection criteria for the varying-coefficient modelling via regularized basis expansions

Hidetoshi Matsui, Toshihiro Misumi, Shuichi Kawano

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)

抄録

Varying-coefficient models (VCMs) are useful tools for analysing longitudinal data. They can effectively describe the relationship between predictors and responses repeatedly measured. VCMs estimated by regularization methods are strongly affected by values of regularization parameters, and therefore selecting these values is a crucial issue. In order to choose these parameters objectively, we derive model selection criteria for evaluating VCMs from the viewpoints of information-theoretic and Bayesian approach. Models are estimated by the method of regularization with basis expansions, and then they are evaluated by model selection criteria. We demonstrate the effectiveness of the proposed criteria through Monte Carlo simulations and real data analysis.

本文言語英語
ページ(範囲)2156-2165
ページ数10
ジャーナルJournal of Statistical Computation and Simulation
84
10
DOI
出版ステータス出版済み - 10月 2014
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • モデリングとシミュレーション
  • 統計学、確率および不確実性
  • 応用数学

フィンガープリント

「Model selection criteria for the varying-coefficient modelling via regularized basis expansions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル