Model for Optimal Power Coefficient Tracking and Loss Reduction of the Wind Turbine Systems

Kashif Sohail, Hooman Farzaneh

研究成果: ジャーナルへの寄稿学術誌査読

5 被引用数 (Scopus)

抄録

This research aimed to introduce a comprehensive mathematical modeling approach based on the maximization of the power coefficient (Cp) to obtain the regulation in pitch angle and tip speed ratio (TSP), taking into account the detailed power losses at the different stages of the power train of the wind turbine. The model is used to track the optimal power coefficient of the wind turbine power train, considering both direct (without gearbox) and indirect (with gearbox) drive configurations. The result of the direct driveline was validated with a 100 W horizontal-axis wind turbine experimental system. The model estimated the optimal value of Cp at 0.48 for a pitch angle of 0 degrees and a TSR of 8.1, which could be obtained at a wind speed of around 11.2 m/s. The results also revealed that, within the lower wind regime, windage, hysteresis, and eddy current losses dominated, while during higher wind regimes, the copper, stray load, and insulator gate bipolar transistor (IGBT) losses gained high values. The developed model was applied to a 20 kW indirect drive wind turbine installed in Gwadar city in Pakistan. Compared with the direct coupling, the optimal value of Cp was obtained at a higher value of the pitch angle (1.7 degrees) and a lower value of TSR (around 6) due to the significant impact of the gear and copper losses in an indirect drivetrain.

本文言語英語
論文番号4159
ジャーナルEnergies
15
11
DOI
出版ステータス出版済み - 6月 1 2022

!!!All Science Journal Classification (ASJC) codes

  • 再生可能エネルギー、持続可能性、環境
  • 建築および建設
  • 燃料技術
  • 工学(その他)
  • エネルギー工学および電力技術
  • エネルギー(その他)
  • 制御と最適化
  • 電子工学および電気工学

フィンガープリント

「Model for Optimal Power Coefficient Tracking and Loss Reduction of the Wind Turbine Systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル