Minimal sufficient positive-operator valued measure on a separable Hilbert space

Yui Kuramochi

研究成果: ジャーナルへの寄稿学術誌査読

13 被引用数 (Scopus)

抄録

We introduce a concept of a minimal sufficient positive-operator valued measure (POVM), which is the least redundant POVM among the POVMs that have the equivalent information about the measured quantum system. Assuming the system Hilbert space to be separable, we show that for a given POVM, a sufficient statistic called a Lehmann-Scheffé-Bahadur statistic induces a minimal sufficient POVM. We also show that every POVMhas an equivalent minimal sufficient POVMand that such a minimal sufficient POVM is unique up to relabeling neglecting null sets. We apply these results to discrete POVMs and information conservation conditions proposed by the author.

本文言語英語
論文番号102205
ジャーナルJournal of Mathematical Physics
56
10
DOI
出版ステータス出版済み - 10月 1 2015
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Minimal sufficient positive-operator valued measure on a separable Hilbert space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル