Method for inferring and extracting reliable genetic interactions from time-series profile of gene expression

Masahiko Nakatsui, Takanori Ueda, Yukihiro Maki, Isao Ono, Masahiro Okamoto

研究成果: ジャーナルへの寄稿学術誌査読

12 被引用数 (Scopus)

抄録

Recent advances in technologies such as DNA microarrays have provided an abundance of gene expression data on the genomic scale. One of the most important projects in the post-genome-era is the systemic identification of gene expression networks. However, inferring internal gene expression structure from experimentally observed time-series data are an inverse problem. We have therefore developed a system for inferring network candidates based on experimental observations. Moreover, we have proposed an analytical method for extracting common core binomial genetic interactions from various network candidates. Common core binomial genetic interactions are reliable interactions with a higher possibility of existence, and are important for understanding the dynamic behavior of gene expression networks. Here, we discuss an efficient method for inferring genetic interactions that combines a Step-by-step strategy (Y. Maki, Y. Takahashi, Y. Arikawa, S. Watanabe, K. Aoshima, Y. Eguchi, T. Ueda, S. Aburatani, S. Kuhara, M. Okamoto, An integrated comprehensive workbench for inferring genetic networks: Voyagene, Journal of Bioinformatics and Computational Biology 2(3) (2004) 533.) with an analysis method for extracting common core binomial genetic interactions.

本文言語英語
ページ(範囲)105-114
ページ数10
ジャーナルMathematical Biosciences
215
1
DOI
出版ステータス出版済み - 9月 2008

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • モデリングとシミュレーション
  • 生化学、遺伝学、分子生物学(全般)
  • 免疫学および微生物学(全般)
  • 農業および生物科学(全般)
  • 応用数学

フィンガープリント

「Method for inferring and extracting reliable genetic interactions from time-series profile of gene expression」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル