Methane decomposition with a minimal catalyst: An optimization study with response surface methodology over Ni/SiO2 nanocatalyst

U. P.M. Ashik, Hazzim F. Abbas, Faisal Abnisa, Shinji Kudo, Jun ichiro Hayashi, W. M.A.Wan Daud

研究成果: ジャーナルへの寄稿学術誌査読

20 被引用数 (Scopus)

抄録

Nowadays, methane cracking in the presence of an efficient catalyst is one of the most investigating areas aiming hydrogen and nanocarbon synthesis. This research contribution systematically investigated the influence of methane partial pressure (PCH4), decomposition temperature, and weight of Ni/SiO2 nanocatalyst (n-Ni/SiO2) on carbon nanotube (CNT) yield. The optimum reaction condition for optimal methane cracking resulted in maximum CNT yield is derived using Design Expert Software. A series of experiments conducted to develop a quadratic polynomial model for CNT yield using response surface methodology. Surprisingly, the optimum catalyst quantity was the lowest (0.30 g) in the experimented parameter range, which exhibited the highest CNT production at 610 °C temperature and 0.8 atm PCH4. The minimal catalyst quantity for the optimum CNT production, which needs only 0.26% of the total volume of the pilot plant reactor, is a breakthrough finding in methane cracking research. It could help to overcome the reactor blockage limitation issues of the process in large scale applications. Thanks to the uniquely supported n-Ni/SiO2 catalyst prepared via co-precipitation cum modified Stöber method. The fresh and used catalysts investigated using different types of characterization techniques such as XRD, BET, Raman spectra, HRTEM, and FESEM-EDX. Characterization results evidenced the presence of differently structured CNTs formed at optimum reaction conditions.

本文言語英語
ページ(範囲)14383-14395
ページ数13
ジャーナルInternational Journal of Hydrogen Energy
45
28
DOI
出版ステータス出版済み - 5月 21 2020

!!!All Science Journal Classification (ASJC) codes

  • 再生可能エネルギー、持続可能性、環境
  • 燃料技術
  • 凝縮系物理学
  • エネルギー工学および電力技術

フィンガープリント

「Methane decomposition with a minimal catalyst: An optimization study with response surface methodology over Ni/SiO2 nanocatalyst」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル