Maximum lifetime coverage problems with battery recovery effects

Norie Fu, Vorapong Suppakitpaisarn, Kei Kimura, Naonori Kakimura

研究成果: ジャーナルへの寄稿会議記事査読

8 被引用数 (Scopus)

抄録

Scheduling sensors to prolong the lifetime of covering targets in the field is one of the central problems in wireless sensor networks. This problem, called the maximum lifetime coverage problem (MLCP), can be formulated as a linear programming problem with exponential size, and has a constant-factor approximation algorithm. In reality, however, batteries of sensors have recovery effects, which is a phenomenon that the deliverable energy in batteries can be replenished by itself if it is left idling for sufficient duration. Thanks to that effects, we can obtain much longer lifetime of sensors if each sensor is forced to take a sleep at some interval. In this paper, we introduce two models that extend the MLCP, incorporating battery recovery effects. The first model represents battery recovery effects in a deterministic way, while the second one uses a probabilistic model to imitate the effects. We then propose efficient algorithms that work for both models by extending approximation algorithms for the original MLCP. Numerical experiments show that the lifetime of our schedule is 10-40% longer than one without battery recovery effects.

本文言語英語
論文番号7036794
ページ(範囲)118-124
ページ数7
ジャーナルProceedings - IEEE Global Communications Conference, GLOBECOM
DOI
出版ステータス出版済み - 2014
外部発表はい
イベント2014 IEEE Global Communications Conference, GLOBECOM 2014 - Austin, 米国
継続期間: 12月 8 201412月 12 2014

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 信号処理

フィンガープリント

「Maximum lifetime coverage problems with battery recovery effects」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル