Maximizing Conversion of Surface Click Reactions for Versatile Molecular Modification on Metal Oxide Nanowires

Rimon Yamaguchi, Takuro Hosomi, Masaya Otani, Kazuki Nagashima, Tsunaki Takahashi, Guozhu Zhang, Masaki Kanai, Hiroshi Masai, Jun Terao, Takeshi Yanagida

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)

抄録

Click reactions (e.g., Huisgen cycloaddition) on metal oxide nanostructures offer a versatile and robust surface molecular modification for various applications because they form strong covalent bonds in a wide range of molecular substrates. This study reports a rational strategy to maximize the conversion rate of surface click reactions on single-crystalline ZnO nanowires by monitoring the reaction progress. p-Polarized multiple-angle incidence resolution spectrometry (pMAIRS) and Fourier-transformed infrared (FT-IR) spectroscopy were employed to monitor the reaction progress of an azide-terminated self-assembled monolayer (SAM) on single-crystalline ZnO nanowires. Although various reaction parameters including the concentration of Cu(I) catalysts, triazolyl ligands, solvents, and target alkynes were systematically examined for the surface click reactions, 10-30% of terminal azide on the nanowire surface remained unreacted. Temperature-dependent FT-IR measurements revealed that such unreacted residual azides deteriorate the thermal stability of the nanowire molecular layer. To overcome this observed conversion limitation of click reactions on nanostructure surfaces, we considered the steric hindrance around the closely packed SAM reaction points, then experimented with dispersing the azide moiety into a methyl-terminated SAM. The mixed-SAM method significantly improved the azide conversion rate to almost 100%. This reaction method enables the construction of spatially patterned molecular surface modifications on metal oxide nanowire arrays without detrimental unreacted azide groups.

本文言語英語
ページ(範囲)5172-5179
ページ数8
ジャーナルLangmuir
37
17
DOI
出版ステータス出版済み - 5月 4 2021

!!!All Science Journal Classification (ASJC) codes

  • 材料科学(全般)
  • 凝縮系物理学
  • 表面および界面
  • 分光学
  • 電気化学

フィンガープリント

「Maximizing Conversion of Surface Click Reactions for Versatile Molecular Modification on Metal Oxide Nanowires」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル