Lp-Lq-Lr estimates and minimal decay regularity for compressible Euler-Maxwell equations

Jiang Xu, Naofumi Mori, Shuichi Kawashima

    研究成果: ジャーナルへの寄稿学術誌査読

    11 被引用数 (Scopus)

    抄録

    Due to the dissipative structure of regularity-loss, extra higher regularity than that for the global-in-time existence is usually imposed to obtain the optimal decay rates of classical solutions to dissipative systems. The aim of this paper is to seek the lowest regularity index for the optimal decay rate of L1(Rn)-L2(Rn). Consequently, a notion of minimal decay regularity for dissipative systems of regularity-loss is firstly proposed. To do this, we develop a new time-decay estimate of Lp(Rn)-Lq(Rn)-Lr(Rn) type by using the low-frequency and high-frequency analysis in Fourier spaces. As an application, for compressible Euler-Maxwell equations with the weaker dissipative mechanism, it is shown that the minimal decay regularity coincides with the critical regularity for global classical solutions. Moreover, the recent decay property for symmetric hyperbolic systems with non-symmetric dissipation is also extended to be the Lp-version.

    本文言語英語
    ページ(範囲)965-981
    ページ数17
    ジャーナルJournal des Mathematiques Pures et Appliquees
    104
    5
    DOI
    出版ステータス出版済み - 11月 2015

    !!!All Science Journal Classification (ASJC) codes

    • 数学 (全般)
    • 応用数学

    フィンガープリント

    「Lp-Lq-Lr estimates and minimal decay regularity for compressible Euler-Maxwell equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル