LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Generative modeling of 3D LiDAR data is an emerging task with promising applications for autonomous mobile robots, such as scalable simulation, scene manipulation, and sparse-to-dense completion of LiDAR point clouds. While existing approaches have demonstrated the feasibility of image-based LiDAR data generation using deep generative models, they still struggle with fidelity and training stability. In this work, we present R2DM, a novel generative model for LiDAR data that can generate diverse and high-fidelity 3D scene point clouds based on the image representation of range and reflectance intensity. Our method is built upon denoising diffusion probabilistic models (DDPMs), which have shown impressive results among generative model frameworks in recent years. To effectively train DDPMs in the LiDAR domain, we first conduct an in-depth analysis of data representation, loss functions, and spatial inductive biases. Leveraging our R2DM model, we also introduce a flexible LiDAR completion pipeline based on the powerful capabilities of DDPMs. We demonstrate that our method surpasses existing methods in generating tasks on the KITTI-360 and KITTI-Raw datasets, as well as in the completion task on the KITTI-360 dataset. Our project page can be found at https://kazuto1011.github.io/r2dm.

本文言語英語
ホスト出版物のタイトル2024 IEEE International Conference on Robotics and Automation, ICRA 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ14724-14731
ページ数8
ISBN(電子版)9798350384574
DOI
出版ステータス出版済み - 5月 2024
イベント2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, 日本
継続期間: 5月 13 20245月 17 2024

出版物シリーズ

名前Proceedings - IEEE International Conference on Robotics and Automation
ISSN(印刷版)1050-4729

会議

会議2024 IEEE International Conference on Robotics and Automation, ICRA 2024
国/地域日本
CityYokohama
Period5/13/245/17/24

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 制御およびシステム工学
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル