Learning r-of-k functions by boosting

Kohei Hatano, Osamu Watanabe

研究成果: ジャーナルへの寄稿会議記事査読

2 被引用数 (Scopus)

抄録

We investigate further improvement of boosting in the case that the target concept belongs to the class of r-of-k threshold Boolean functions, which answer "+1" if at least r of k relevant variables are positive, and answer "-1" otherwise. Given m examples of a r-of-k function and literals as base hypotheses, popular boosting algorithms (e.g., AdaBoost) construct a consistent final hypothesis by using O(k2 log m) base hypotheses. While this convergence speed is tight in general, we show that a modification of AdaBoost (confidence-rated AdaBoost [SS99] or InfoBoost [As100]) can make use of the property of r-of-k functions that make less error on one-side to find a consistent final hypothesis by using O(kr log m) hypotheses. Our result extends the previous investigation by Hatano and Warmuth [HW04] and gives more general examples where confidence-rated AdaBoost or InfoBoost has an advantage over AdaBoost.

本文言語英語
ページ(範囲)114-126
ページ数13
ジャーナルLecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
3244
DOI
出版ステータス出版済み - 2004
外部発表はい
イベント15th International Conference ALT 2004: Algorithmic Learning Theory - Padova, イタリア
継続期間: 10月 2 200410月 5 2004

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Learning r-of-k functions by boosting」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル