Learning meaningful interactions from repetitious motion patterns

Koichi Ogawara, Yasufumi Tanabe, Ryo Kurazume, Tsutomu Hasegawa

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

2 被引用数 (Scopus)

抄録

In this paper, we propose a method for estimating meaningful actions from long-term observation of everyday manipulation tasks without prior knowledge as part of an action understanding framework for life support robotic systems. The target task is defined as a sequence of interactions between objects. An interaction that appears many times is assumed to be meaningful and repetitious relative motion patterns are detected from trajectories of multiple objects. The main contribution is that the problem is formulated as a combinatorial optimization problem with two parameters, target object labels and correspondences on similar motion patterns, and is solved using local and global Dynamic Programming (DP) in polynomial time O(N logN), where N is a total amount of data. The proposed method is evaluated against manipulation tasks using everyday objects such as a cup and a tea-pot.

本文言語英語
ホスト出版物のタイトル2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
ページ3350-3355
ページ数6
DOI
出版ステータス出版済み - 2008
イベント2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS - Nice, フランス
継続期間: 9月 22 20089月 26 2008

出版物シリーズ

名前2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS

その他

その他2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
国/地域フランス
CityNice
Period9/22/089/26/08

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Learning meaningful interactions from repetitious motion patterns」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル