Investigation of a cascaded CO2 refrigeration system using phase change materials for energy-saving potentials

研究成果: ジャーナルへの寄稿学術誌査読

18 被引用数 (Scopus)

抄録

A high-pressure lift often triggers an increased power input to the vapor compression systems. The increased power consumption becomes a bottleneck in R-744 refrigeration systems for freezing and refrigeration applications. Meanwhile, phase change materials (PCM) offer operation flexibility in the form of the compressor run-time from the energy storage potential. In this article, the energy-saving potential of the PCMs on a cascade refrigeration system using CO2 is investigated focusing on the impacts of charge amounts and the thermal resistance of the PCM. The validated dynamic model in Simscape™/MATLAB for an R-744 vapor compression system is adopted for a cascade refrigeration system together with the validated PCM model. In the studied system, the PCM is installed in the storage compartment as a thermal buffer. The comprehensive model employed an acausal, object-oriented, and equation-based paradigm adopting detailed heat transfer characteristics. The effect of PCM on the compressor running time was investigated under the cyclic steady-state operating conditions. The results showed that the compressor “On-time” ratio decreases when using the PCM; subsequently, the power reduction. The system consumes about 6.76 kWh (without PCM) and 5.93 kWh with PCM; thus, the power consumption decreases by 12.3%. The threshold PCM charge ratio is observed to be 1. Increasing the PCM charge value above this threshold does not trigger a significant decrease in power reduction. The increase in the overall thermal resistance of PCM has a negative impact on the “On-time” ratio and power consumption. The benefit of PCM is insignificant for thermal resistance above 0.02 K W−1. Despite the shortcomings of several assumptions involved, the present results clearly highlight the positive impacts of the PCM in terms of power savings for low-temperature refrigeration applications using R-744.

本文言語英語
論文番号116104
ジャーナルApplied Thermal Engineering
182
DOI
出版ステータス出版済み - 1月 5 2021

!!!All Science Journal Classification (ASJC) codes

  • エネルギー工学および電力技術
  • 産業および生産工学

フィンガープリント

「Investigation of a cascaded CO2 refrigeration system using phase change materials for energy-saving potentials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル