TY - GEN
T1 - Investigating the capitalize effect of sensor position for training type recognition in a body weight training support system
AU - Takata, Masashi
AU - Fujimoto, Manato
AU - Yasumoto, Keiichi
AU - Nakamura, Yugo
AU - Arakawa, Yutaka
N1 - Publisher Copyright:
© 2018 Association for Computing Machinery.
PY - 2018/10/8
Y1 - 2018/10/8
N2 - A body weight training (BWT) means the training which utilizes the self-weight instead of the weight machine. The feedback of form and proper training menu recommendation is important for maximizing the effect of BWT. The objective of this study is to realize a novel support system which allows beginners to perform effective BWT alone, under wearable computing environment. To make an effective feedback, it is necessary to recognize BWT type with high accuracy. However, since the accuracy is greatly affected by the position of wearable sensors, we need to know the sensor position which achieves the high accuracy in recognizing the BWT type. We investigated 10 types BWT recognition accuracy for each sensor position. We found that waist is the best position when only 1 sensor is used. When 2 sensors are used, we found that the best combination is of waist and wrist. We conducted an evaluation experiment to show the effectiveness of sensor position. As a result of leave-one-person-out cross-validation from 13 subjects to confirm validity, we calculated the F-measure of 93.5% when sensors are placed on both wrist and waist.
AB - A body weight training (BWT) means the training which utilizes the self-weight instead of the weight machine. The feedback of form and proper training menu recommendation is important for maximizing the effect of BWT. The objective of this study is to realize a novel support system which allows beginners to perform effective BWT alone, under wearable computing environment. To make an effective feedback, it is necessary to recognize BWT type with high accuracy. However, since the accuracy is greatly affected by the position of wearable sensors, we need to know the sensor position which achieves the high accuracy in recognizing the BWT type. We investigated 10 types BWT recognition accuracy for each sensor position. We found that waist is the best position when only 1 sensor is used. When 2 sensors are used, we found that the best combination is of waist and wrist. We conducted an evaluation experiment to show the effectiveness of sensor position. As a result of leave-one-person-out cross-validation from 13 subjects to confirm validity, we calculated the F-measure of 93.5% when sensors are placed on both wrist and waist.
UR - http://www.scopus.com/inward/record.url?scp=85058341888&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85058341888&partnerID=8YFLogxK
U2 - 10.1145/3267305.3267504
DO - 10.1145/3267305.3267504
M3 - Conference contribution
AN - SCOPUS:85058341888
T3 - UbiComp/ISWC 2018 - Adjunct Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2018 ACM International Symposium on Wearable Computers
SP - 1404
EP - 1408
BT - UbiComp/ISWC 2018 - Adjunct Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2018 ACM International Symposium on Wearable Computers
PB - Association for Computing Machinery, Inc
T2 - 2018 Joint ACM International Conference on Pervasive and Ubiquitous Computing, UbiComp 2018 and 2018 ACM International Symposium on Wearable Computers, ISWC 2018
Y2 - 8 October 2018 through 12 October 2018
ER -