INTERPRETABLE N-BEATS DEEP NETWORKS OF MULTISTEP FORECASTING FOR THE GROUND-BASED GEOMAGNETIC DST INDEX

Nur Dalila Khirul Ashar, Syamsiah Mashohor, Aduwati Sali, Mohamad Huzaimy Jusoh, Akimasa Yoshikawa, Zatul Iffah Abdul Latiff, Muhammad Asraf Hairuddin

研究成果: ジャーナルへの寄稿学術誌査読

抄録

The importance of geomagnetic disturbances represented by ground earth activities based on the disturbance storm time (Dst index) entails an early forecast of geomagnetic storm occurrence, which could potentially disrupt the system operations. Often, the forecast outcome serves as an essential indicator for operational users who not only require early forecasting prior to incoming geomagnetic storms but also intend to obtain explainable insight and understanding of the generated forecast results. Therefore, a new model architecture, namely neural-basis expansion analysis for interpretable time series (N-BEATS), is proposed that incorporates a more transparent architecture of the deep learning model into producing the multiple steps ahead forecasting of the Dst index. Extensive comparisons among several deep learning models, namely long short-term memory (LSTM), gated recurrent units (GRU), and bidirectional GRU (Bi-GRU) network architectures, will be assessed, considering the model performances, and the impact of forecast variability will be discussed. The superiority of N-BEATS overcomes the state-of-the-art LSTM forecast model in terms of computational resources, and the effectiveness of learning the data of the Dst index pattern could be observed.

本文言語英語
ページ(範囲)485-496
ページ数12
ジャーナルICIC Express Letters
19
5
DOI
出版ステータス出版済み - 5月 2025

!!!All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • コンピュータサイエンス一般

フィンガープリント

「INTERPRETABLE N-BEATS DEEP NETWORKS OF MULTISTEP FORECASTING FOR THE GROUND-BASED GEOMAGNETIC DST INDEX」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル