TY - JOUR
T1 - Influences of microstructure on critical current properties in MgB 2/Al Film
AU - Shimada, Yusuke
AU - Kubota, Yuuki
AU - Hata, Satoshi
AU - Ikeda, Ken Ichi
AU - Nakashima, Hideharu
AU - Doi, Toshiya
AU - Fujiyoshi, Takanori
PY - 2013
Y1 - 2013
N2 - The metal Al is lighter in weight than other substrate materials for MgB2 films such as Si and Ni. This property inspires MgB2 fabrication on a large-scale Al substrate as a new route to MgB2 tapes. Here we report microstructural factors influencing critical current density, Jc, in MgB2/Al films. MgB2/Al films were prepared by the following steps: deposit a boron layer of 3 nm in thickness on an Al substrate heated at 280°C ; deposit Mg and boron on the boron layer (sample A). For comparison, Mg and boron were deposited directly on an Al substrate heated at 265°C (sample B). The microstructure was observed by transmission electron microscopy (TEM) and scanning TEM. Jc values at 20 K in the self-field were 4.9 × 106 A cm-2 for sample A and 2.7 × 106 A cm-2 for sample B. Both the samples form an oxygen-rich layer of 10 nm in thickness at the substrate surface. This oxygen-rich layer may suppress Al diffusion into MgB2 lattices. The [001] texture of columnar MgB2 crystals grown on the substrate is stronger in sample A than in sample B. This indicates that the boron layer deposition on the Al substrate is effective for fabricating well-textured MgB2 polycrystals, resulting in the higher J c enhancement for sample A.
AB - The metal Al is lighter in weight than other substrate materials for MgB2 films such as Si and Ni. This property inspires MgB2 fabrication on a large-scale Al substrate as a new route to MgB2 tapes. Here we report microstructural factors influencing critical current density, Jc, in MgB2/Al films. MgB2/Al films were prepared by the following steps: deposit a boron layer of 3 nm in thickness on an Al substrate heated at 280°C ; deposit Mg and boron on the boron layer (sample A). For comparison, Mg and boron were deposited directly on an Al substrate heated at 265°C (sample B). The microstructure was observed by transmission electron microscopy (TEM) and scanning TEM. Jc values at 20 K in the self-field were 4.9 × 106 A cm-2 for sample A and 2.7 × 106 A cm-2 for sample B. Both the samples form an oxygen-rich layer of 10 nm in thickness at the substrate surface. This oxygen-rich layer may suppress Al diffusion into MgB2 lattices. The [001] texture of columnar MgB2 crystals grown on the substrate is stronger in sample A than in sample B. This indicates that the boron layer deposition on the Al substrate is effective for fabricating well-textured MgB2 polycrystals, resulting in the higher J c enhancement for sample A.
UR - http://www.scopus.com/inward/record.url?scp=84877848678&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877848678&partnerID=8YFLogxK
U2 - 10.1109/TASC.2013.2238284
DO - 10.1109/TASC.2013.2238284
M3 - Article
AN - SCOPUS:84877848678
SN - 1051-8223
VL - 23
JO - IEEE Transactions on Applied Superconductivity
JF - IEEE Transactions on Applied Superconductivity
IS - 3
M1 - 6403883
ER -