抄録
Let G be a compact connected Lie group and let P be a principal G-bundle over K. The gauge group of P is the topological group of automorphisms of P. For fixed G and K, consider all principal G-bundles P over K. It is proved in Crabb and Sutherland [Proc. London Math. Soc. (3) 81 (2000) 747-768] and Tsutaya [J. London Math. Society 85 (2012) 142-164] that the number of An-types of the gauge groups of P is finite if n < ∞ and K is a finite complex. We show that the number of A∞-types of the gauge groups of P is infinite if K is a sphere and there are infinitely many P.
本文言語 | 英語 |
---|---|
論文番号 | jtv025 |
ページ(範囲) | 181-191 |
ページ数 | 11 |
ジャーナル | Journal of Topology |
巻 | 9 |
号 | 1 |
DOI | |
出版ステータス | 出版済み - 7月 29 2015 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 幾何学とトポロジー