TY - JOUR
T1 - In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures
AU - Chang, Chandong
AU - McNeill, Lisa C.
AU - Moore, J. Casey
AU - Lin, Weiren
AU - Conin, Marianne
AU - Yamada, Yasuhiro
PY - 2010/12/1
Y1 - 2010/12/1
N2 - We constrain the orientations and magnitudes of in situ stress tensors using borehole wall failures (borehole breakouts and drilling-induced tensile fractures) detected in four vertical boreholes (C0002, C0001, C0004, and C0006 from NW to SE) drilled in the Nankai accretionary wedge. The directions of the maximum horizontal principal stress (SHmax), indicated by the azimuths of borehole wall failures, are consistent in individual holes, but those in C0002 (margin-parallel SHmax) are nearly perpendicular to those in all other holes (margin-normal SHmax). Constrained stress magnitudes in C0001 and C0002, using logged breakout widths combined with empirical rock strength derived from sonic velocity, as well as the presence of the drilling-induced tensile fractures, suggest that the stress state in the shallow portion of the wedge (fore-arc basin and slope sediment formations) is predominantly in favor of normal faulting and that the stress state in the deeper accretionary prism is in favor of probable strike-slip faulting or possible reverse faulting. Thus, the stress regime appears to be divided with depth by the major geological boundaries such as unconformities or thrust faults. The margin-perpendicular tectonic stress components in the two adjacent sites, C0001 and C0002, are different, suggesting that tectonic force driven by the plate pushing of the Philippine Sea plate does not uniformly propagate. Rather, the stress field is inferred to be influenced by additional factors such as local deformation caused by gravitation-driven extension in the fore arc and thrusting and bending within individual geologic domains.
AB - We constrain the orientations and magnitudes of in situ stress tensors using borehole wall failures (borehole breakouts and drilling-induced tensile fractures) detected in four vertical boreholes (C0002, C0001, C0004, and C0006 from NW to SE) drilled in the Nankai accretionary wedge. The directions of the maximum horizontal principal stress (SHmax), indicated by the azimuths of borehole wall failures, are consistent in individual holes, but those in C0002 (margin-parallel SHmax) are nearly perpendicular to those in all other holes (margin-normal SHmax). Constrained stress magnitudes in C0001 and C0002, using logged breakout widths combined with empirical rock strength derived from sonic velocity, as well as the presence of the drilling-induced tensile fractures, suggest that the stress state in the shallow portion of the wedge (fore-arc basin and slope sediment formations) is predominantly in favor of normal faulting and that the stress state in the deeper accretionary prism is in favor of probable strike-slip faulting or possible reverse faulting. Thus, the stress regime appears to be divided with depth by the major geological boundaries such as unconformities or thrust faults. The margin-perpendicular tectonic stress components in the two adjacent sites, C0001 and C0002, are different, suggesting that tectonic force driven by the plate pushing of the Philippine Sea plate does not uniformly propagate. Rather, the stress field is inferred to be influenced by additional factors such as local deformation caused by gravitation-driven extension in the fore arc and thrusting and bending within individual geologic domains.
UR - http://www.scopus.com/inward/record.url?scp=78650570221&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78650570221&partnerID=8YFLogxK
U2 - 10.1029/2010GC003261
DO - 10.1029/2010GC003261
M3 - Article
AN - SCOPUS:78650570221
SN - 1525-2027
VL - 11
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
IS - 12
M1 - Q0AD04
ER -