Improvements of aspect identification method by matrices

Hiroyasu Sakamoto

    研究成果: ジャーナルへの寄稿学術誌査読

    抄録

    In single-view methods based on three-dimensional (3D) object geometry models in computer vision, a central problem is determining the correspondence of feature points in the model and the observed image. In this paper the author investigates the features of aspect identification methods used to solve this problem efficiently using matrices, then describes the causes of misidentifications. In addition, the author proposes a new identification matrix which improves this identification method statistically by using singular value decomposition, and general eigenvalues and eigenvectors, demonstrating the validity of the method using mathematical experiments. These improvements allow for a reduction of the computational burden for online identification of aspects while at the same time reducing the misidentification rate. This method can be an identification standard for norms of vectors and matrices. As a result, it is ideal for high-speed processing using hardware and for use in parallel systems.

    本文言語英語
    ページ(範囲)75-84
    ページ数10
    ジャーナルSystems and Computers in Japan
    33
    13
    DOI
    出版ステータス出版済み - 11月 30 2002

    !!!All Science Journal Classification (ASJC) codes

    • 理論的コンピュータサイエンス
    • 情報システム
    • ハードウェアとアーキテクチャ
    • 計算理論と計算数学

    フィンガープリント

    「Improvements of aspect identification method by matrices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル