Identifying gene pathways associated with cancer characteristics via sparse statistical methods

Shuichi Kawano, Teppei Shimamura, Atsushi Niida, Seiya Imoto, Rui Yamaguchi, Masao Nagasaki, Ryo Yoshida, Cristin Print, Satoru Miyano

研究成果: ジャーナルへの寄稿学術誌査読

9 被引用数 (Scopus)

抄録

We propose a statistical method for uncovering gene pathways that characterize cancer heterogeneity. To incorporate knowledge of the pathways into the model, we define a set of activities of pathways from microarray gene expression data based on the Sparse Probabilistic Principal Component Analysis (SPPCA). A pathway activity logistic regression model is then formulated for cancer phenotype. To select pathway activities related to binary cancer phenotypes, we use the elastic net for the parameter estimation and derive a model selection criterion for selecting tuning parameters included in the model estimation. Our proposed method can also reverse-engineer gene networks based on the identified multiple pathways that enables us to discover novel gene-gene associations relating with the cancer phenotypes. We illustrate the whole process of the proposed method through the analysis of breast cancer gene expression data.

本文言語英語
論文番号6175008
ページ(範囲)966-972
ページ数7
ジャーナルIEEE/ACM Transactions on Computational Biology and Bioinformatics
9
4
DOI
出版ステータス出版済み - 2012
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • バイオテクノロジー
  • 遺伝学
  • 応用数学

フィンガープリント

「Identifying gene pathways associated with cancer characteristics via sparse statistical methods」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル