TY - JOUR
T1 - Identification of domains participating in the substrate specificity and subcellular localization of the multidrug resistance proteins MRP1 and MRP2
AU - Konno, Toshikazu
AU - Ebihara, Takuya
AU - Hisaeda, Keiji
AU - Uchiumi, Takeshi
AU - Nakamura, Takanori
AU - Shirakusa, Takayuki
AU - Kuwano, Michihiko
AU - Wada, Morimasa
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2003/6/20
Y1 - 2003/6/20
N2 - The human multidrug resistance protein MRP1 and its homolog, MRP2, are both thought to be involved in cancer drug resistance and the transport of a wide variety of organic anions, including the cysteinyl leukotriene C4 (LTC4) (Km = 0.1 and 1 μM). To determine which domain of these proteins is associated with substrate specificity and subcellular localization, we constructed various chimeric MRP1/MRP2 molecules and expressed them in polarized mammalian LLC-PK1 cells. We examined the kinetic properties of each chimeric protein by measuring LTC4 and methotrexate transport in inside-out membrane vesicles, sensitivity to an anticancer agent, etoposide, and subcellular localization by indirect immunofluorescence methods. The following results were determined in these studies: (i) when the NH2-proximal 108 amino acids of MRP2, including transmembrane (TM) helices 1-3, were exchanged with the corresponding region of MRP1, Km(LTC4) values of the chimera decreased ∼4-fold and Km(methotrexate) values increased ∼5-fold relative to those of wild-type MRP2 and MRP1, respectively, whereas resistance to etoposide increased ∼3-fold; (ii) when the NH2-proximal region up to TM9 of MRP2 was exchanged with the corresponding region of MRP1, a further increase in etoposide resistance was observed, and subcellular localization moved from the apical to the lateral membrane; (iii) when two-thirds of MRP2 at the NH2 terminus were exchanged with the corresponding MRP1 region, the chimeric protein transported LTC4 with an efficiency comparable with that achieved by the wild-type MRP1; and (iv) exchange of the COOH-terminal 51 amino acids between MRP1 and MRP2 did not affect the localization of either of the proteins. These results provide a strong framework for further studies aimed at determining the precise domains of MRP1 and MRP2 with affinity for LTC4 and anticancer agents.
AB - The human multidrug resistance protein MRP1 and its homolog, MRP2, are both thought to be involved in cancer drug resistance and the transport of a wide variety of organic anions, including the cysteinyl leukotriene C4 (LTC4) (Km = 0.1 and 1 μM). To determine which domain of these proteins is associated with substrate specificity and subcellular localization, we constructed various chimeric MRP1/MRP2 molecules and expressed them in polarized mammalian LLC-PK1 cells. We examined the kinetic properties of each chimeric protein by measuring LTC4 and methotrexate transport in inside-out membrane vesicles, sensitivity to an anticancer agent, etoposide, and subcellular localization by indirect immunofluorescence methods. The following results were determined in these studies: (i) when the NH2-proximal 108 amino acids of MRP2, including transmembrane (TM) helices 1-3, were exchanged with the corresponding region of MRP1, Km(LTC4) values of the chimera decreased ∼4-fold and Km(methotrexate) values increased ∼5-fold relative to those of wild-type MRP2 and MRP1, respectively, whereas resistance to etoposide increased ∼3-fold; (ii) when the NH2-proximal region up to TM9 of MRP2 was exchanged with the corresponding region of MRP1, a further increase in etoposide resistance was observed, and subcellular localization moved from the apical to the lateral membrane; (iii) when two-thirds of MRP2 at the NH2 terminus were exchanged with the corresponding MRP1 region, the chimeric protein transported LTC4 with an efficiency comparable with that achieved by the wild-type MRP1; and (iv) exchange of the COOH-terminal 51 amino acids between MRP1 and MRP2 did not affect the localization of either of the proteins. These results provide a strong framework for further studies aimed at determining the precise domains of MRP1 and MRP2 with affinity for LTC4 and anticancer agents.
UR - http://www.scopus.com/inward/record.url?scp=0037927606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037927606&partnerID=8YFLogxK
U2 - 10.1074/jbc.M302868200
DO - 10.1074/jbc.M302868200
M3 - Article
C2 - 12682044
AN - SCOPUS:0037927606
SN - 0021-9258
VL - 278
SP - 22908
EP - 22917
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 25
ER -