TY - JOUR
T1 - High Voltage and Capacity Dual-Ion Battery Using Acetonitrile-Aqueous Hybrid Electrolyte with Concentrated LiFSI-LiTFSI
AU - Yang, Dengyao
AU - Watanabe, Motonori
AU - Takagaki, Atsushi
AU - Ishihara, Tatsumi
N1 - Publisher Copyright:
© 2022 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited.
PY - 2022/12
Y1 - 2022/12
N2 - Water-acetonitrile (AN) hybrid electrolyte with high concentration of bis(trifluoromethanesulfonyl) imide (LiTFSI) and Lithium bis(fluorosulfonyl) imide (LiFSI) (LiTFSI-LiFSI=3:1, molar ratio) supporting salts are studied for the high potential and large capacity rechargeable dual-ion battery. Water-acetonitrile hybrid electrolyte (WA) shows a wide electrochemical stability window of 3.1 V in 20 m aqueous electrolyte and 3.6 V in 20 m 9LiFSI-1LiTFSI in water: AN=1:3 molar ratio electrolyte. In particular, high oxidation potential, which can be assigned to the strong solvated ionic cluster formed between AN, water and LiTFSI-LiFSI supporting salts. The dual-ion battery is assembled using the graphitic carbon (KS6) and the activated carbon (AC) as cathode and anode, respectively, and 20 m LiTFSI-LiFSI in hybrid AN-water as electrolyte. It is found that the reasonably large capacity, coulombic efficiency and cycle stability were achieved. The KS6/AC cell shows 86 mAh g−1 at the initial cycle and 50 mAh g−1 at 100th cycle in a voltage range of 0-3.25 V, and the average coulombic efficiency of 85% is sustained over 200 cycles. The solvated structure of water to Li+ is strengthened by addition of AN from ATR-IR and NMR spectrums analysis and this change in the solvated structure is the main reason for the increased performance of the aqueous dual-ion battery.
AB - Water-acetonitrile (AN) hybrid electrolyte with high concentration of bis(trifluoromethanesulfonyl) imide (LiTFSI) and Lithium bis(fluorosulfonyl) imide (LiFSI) (LiTFSI-LiFSI=3:1, molar ratio) supporting salts are studied for the high potential and large capacity rechargeable dual-ion battery. Water-acetonitrile hybrid electrolyte (WA) shows a wide electrochemical stability window of 3.1 V in 20 m aqueous electrolyte and 3.6 V in 20 m 9LiFSI-1LiTFSI in water: AN=1:3 molar ratio electrolyte. In particular, high oxidation potential, which can be assigned to the strong solvated ionic cluster formed between AN, water and LiTFSI-LiFSI supporting salts. The dual-ion battery is assembled using the graphitic carbon (KS6) and the activated carbon (AC) as cathode and anode, respectively, and 20 m LiTFSI-LiFSI in hybrid AN-water as electrolyte. It is found that the reasonably large capacity, coulombic efficiency and cycle stability were achieved. The KS6/AC cell shows 86 mAh g−1 at the initial cycle and 50 mAh g−1 at 100th cycle in a voltage range of 0-3.25 V, and the average coulombic efficiency of 85% is sustained over 200 cycles. The solvated structure of water to Li+ is strengthened by addition of AN from ATR-IR and NMR spectrums analysis and this change in the solvated structure is the main reason for the increased performance of the aqueous dual-ion battery.
UR - http://www.scopus.com/inward/record.url?scp=85145357830&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85145357830&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/acaad1
DO - 10.1149/1945-7111/acaad1
M3 - Article
AN - SCOPUS:85145357830
SN - 0013-4651
VL - 169
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 12
M1 - 120516
ER -