Growth rate distribution of NH4Cl dendrite and its scaling structure

Hiroshi Miki, Haruo Honjo

    研究成果: ジャーナルへの寄稿学術誌査読

    1 被引用数 (Scopus)

    抄録

    Scaling structure of the growth rate distribution on the interface of a dendritic pattern is investigated. The distribution is evaluated for an NH 4Cl quasi-two-dimensional crystal by numerically solving the Laplace equation with the boundary condition taking account of the surface tension effect. It is found that the distribution has multifractality and the surface tension effect is almost ineffective in the unscreened large growth region. The values of the minimum singular exponent and the fractal dimension are smaller than those for the diffusion-limited aggregation pattern. The Makarov's theorem, the information dimension equals one, and the Turkevich-Scher conjecture between the fractal dimension and the minimum singularity exponent hold.

    本文言語英語
    論文番号061603
    ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
    86
    6
    DOI
    出版ステータス出版済み - 12月 13 2012

    !!!All Science Journal Classification (ASJC) codes

    • 統計物理学および非線形物理学
    • 統計学および確率
    • 凝縮系物理学

    フィンガープリント

    「Growth rate distribution of NH4Cl dendrite and its scaling structure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル