Group Correction-based Local Disturbance Particle Swarm Optimization algorithm for solving Continuous Distributed Constraint Optimization Problems

Meifeng Shi, Haitao Xin, Makoto Yokoo

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Continuous Distributed Constraint Optimization Problems (C-DCOPs) are a significant constraint handling framework to model continuous variable problems of multi-agent systems. Many excellent algorithms have been designed to solve C-DCOPs in recent decades. However, these algorithms are prone to falling into local optimum, which is a major challenge in solving C-DCOPs. This paper proposes a Group Correction-based Local Disturbance Particle Swarm Optimization algorithm named GC-LDP to improve its solution quality. In GC-LDP, we introduce two items, the average of the personal best positions and the average of the personal current positions, into the velocity update formula of traditional Particle Swarm Optimization to utilize the group knowledge to correct the exploitation direction. In addition, a local disturbance strategy is designed in GC-LDP to increase the swarm diversity by searching the nearest particle group in the solution space to enhance the algorithm's exploration ability. GC-LDP has been theoretically proven to be an anytime algorithm. Furthermore, based on the extensive experiments on four types of benchmark problems, we demonstrate that GC-LDP outperforms state-of-the-art C-DCOP algorithms in terms of convergence speed and solution quality.

本文言語英語
ホスト出版物のタイトルProceedings - 2024 IEEE Conference on Artificial Intelligence, CAI 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ652-658
ページ数7
ISBN(電子版)9798350354096
DOI
出版ステータス出版済み - 2024
イベント2nd IEEE Conference on Artificial Intelligence, CAI 2024 - Singapore, シンガポール
継続期間: 6月 25 20246月 27 2024

出版物シリーズ

名前Proceedings - 2024 IEEE Conference on Artificial Intelligence, CAI 2024

会議

会議2nd IEEE Conference on Artificial Intelligence, CAI 2024
国/地域シンガポール
CitySingapore
Period6/25/246/27/24

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 情報システムおよび情報管理
  • モデリングとシミュレーション

フィンガープリント

「Group Correction-based Local Disturbance Particle Swarm Optimization algorithm for solving Continuous Distributed Constraint Optimization Problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル