Graph Classes and Approximability of the Happy Set Problem

Yuichi Asahiro, Hiroshi Eto, Tesshu Hanaka, Guohui Lin, Eiji Miyano, Ippei Terabaru

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

In this paper we study the approximability of the Maximum Happy Set problem (MaxHS) and the computational complexity of MaxHS on graph classes: For an undirected graph and a subset of vertices, a vertex v is happy if v and all its neighbors are in S; otherwise unhappy. Given an undirected graph and an integer k, the goal of MaxHS is to find a subset of k vertices such that the number of happy vertices is maximized. MaxHS is known to be NP-hard. In this paper, we design a-approximation algorithm for MaxHS on graphs with maximum degree. Next, we show that the approximation ratio can be improved to if the input is a connected graph and its maximum degree is a constant. Then, we show that MaxHS can be solved in polynomial time if the input graph is restricted to proper interval graphs, or block graphs. We prove nevertheless that MaxHS remains NP-hard even for bipartite graphs or for cubic graphs.

本文言語英語
ホスト出版物のタイトルComputing and Combinatorics - 26th International Conference, COCOON 2020, Proceedings
編集者Donghyun Kim, R.N. Uma, Zhipeng Cai, Dong Hoon Lee
出版社Springer Science and Business Media Deutschland GmbH
ページ335-346
ページ数12
ISBN(印刷版)9783030581497
DOI
出版ステータス出版済み - 2020
イベント26th International Conference on Computing and Combinatorics, COCOON 2020 - Atlanta, 米国
継続期間: 8月 29 20208月 31 2020

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12273 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議26th International Conference on Computing and Combinatorics, COCOON 2020
国/地域米国
CityAtlanta
Period8/29/208/31/20

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Graph Classes and Approximability of the Happy Set Problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル