Glycan classification with tree kernels

Yoshihiro Yamanishi, Francis Bach, Jean Philippe Vert

研究成果: ジャーナルへの寄稿学術誌査読

48 被引用数 (Scopus)

抄録

Motivation: Glycans are covalent assemblies of sugar that play crucial roles in many cellular processes. Recently, comprehensive data about the structure and function of glycans have been accumulated, therefore the need for methods and algorithms to analyze these data is growing fast. Results: This article presents novel methods for classifying glycans and detecting discriminative glycan motifs with support vector machines (SVM). We propose a new class of tree kernels to measure the similarity between glycans. These kernels are based on the comparison of tree substructures, and take into account several glycan features such as the sugar type, the sugar bound type or layer depth. The proposed methods are tested on their ability to classify human glycans into four blood components: leukemia cells, erythrocytes, plasma and serum. They are shown to outperform a previously published method. We also applied a feature selection approach to extract glycan motifs which are characteristic of each blood component. We confirmed that some leukemia-specific glycan motifs detected by our method corresponded to several results in the literature.

本文言語英語
ページ(範囲)1211-1216
ページ数6
ジャーナルBioinformatics
23
10
DOI
出版ステータス出版済み - 5月 15 2007
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • 生化学
  • 分子生物学
  • コンピュータ サイエンスの応用
  • 計算理論と計算数学
  • 計算数学

フィンガープリント

「Glycan classification with tree kernels」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル