TY - JOUR
T1 - GDNF From Human Periodontal Ligament Cells Treated With Pro-Inflammatory Cytokines Promotes Neurocytic Differentiation of PC12 Cells
AU - Yoshida, Shinichiro
AU - Yamamoto, Naohide
AU - Wada, Naohisa
AU - Tomokiyo, Atsushi
AU - Hasegawa, Daigaku
AU - Hamano, Sayuri
AU - Mitarai, Hiromi
AU - Monnouchi, Satoshi
AU - Yuda, Asuka
AU - Maeda, Hidefumi
N1 - Publisher Copyright:
© 2016 Wiley Periodicals, Inc.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Glial cell line-derived neurotrophic factor (GDNF) is known to mediate multiple biological activities such as promotion of cell motility and proliferation, and morphogenesis. However, little is known about its effects on periodontal ligament (PDL) cells. Recently, we reported that GDNF expression is increased in wounded rat PDL tissue and human PDL cells (HPDLCs) treated with pro-inflammatory cytokines. Here, we investigated the associated expression of GDNF and the pro-inflammatory cytokine interleukin-1 beta (IL-1β) in wounded PDL tissue, and whether HPDLCs secrete GDNF which affects neurocytic differentiation. Rat PDL cells near the wounded area showed intense immunoreactions against an anti-GDNF antibody, where immunoreactivity was also increased against an anti-IL-1β antibody. Compared with untreated cells, HPDLCs treated with IL-1β or tumor necrosis factor-alpha showed an increase in the secretion of GDNF protein. Conditioned medium of IL-1β-treated HPDLCs (IL-1β-CM) increased neurite outgrowth of PC12 rat adrenal pheochromocytoma cells. The expression levels of two neural regeneration-associated genes, growth-associated protein-43 (Gap-43), and small proline-rich repeat protein 1A (Sprr1A), were also upregulated in IL-1β-CM-treated PC12 cells. These stimulatory effects of IL-1β-CM were significantly inhibited by a neutralizing antibody against GDNF. In addition, U0126, a MEK inhibitor, inhibited GDNF-induced neurite outgrowth of PC12 cells. These findings suggest that an increase of GDNF in wounded PDL tissue might play an important role in neural regeneration probably via the MEK/ERK signaling pathway. J. Cell. Biochem. 118: 699–708, 2017.
AB - Glial cell line-derived neurotrophic factor (GDNF) is known to mediate multiple biological activities such as promotion of cell motility and proliferation, and morphogenesis. However, little is known about its effects on periodontal ligament (PDL) cells. Recently, we reported that GDNF expression is increased in wounded rat PDL tissue and human PDL cells (HPDLCs) treated with pro-inflammatory cytokines. Here, we investigated the associated expression of GDNF and the pro-inflammatory cytokine interleukin-1 beta (IL-1β) in wounded PDL tissue, and whether HPDLCs secrete GDNF which affects neurocytic differentiation. Rat PDL cells near the wounded area showed intense immunoreactions against an anti-GDNF antibody, where immunoreactivity was also increased against an anti-IL-1β antibody. Compared with untreated cells, HPDLCs treated with IL-1β or tumor necrosis factor-alpha showed an increase in the secretion of GDNF protein. Conditioned medium of IL-1β-treated HPDLCs (IL-1β-CM) increased neurite outgrowth of PC12 rat adrenal pheochromocytoma cells. The expression levels of two neural regeneration-associated genes, growth-associated protein-43 (Gap-43), and small proline-rich repeat protein 1A (Sprr1A), were also upregulated in IL-1β-CM-treated PC12 cells. These stimulatory effects of IL-1β-CM were significantly inhibited by a neutralizing antibody against GDNF. In addition, U0126, a MEK inhibitor, inhibited GDNF-induced neurite outgrowth of PC12 cells. These findings suggest that an increase of GDNF in wounded PDL tissue might play an important role in neural regeneration probably via the MEK/ERK signaling pathway. J. Cell. Biochem. 118: 699–708, 2017.
UR - http://www.scopus.com/inward/record.url?scp=84988600854&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84988600854&partnerID=8YFLogxK
U2 - 10.1002/jcb.25662
DO - 10.1002/jcb.25662
M3 - Article
C2 - 27463736
AN - SCOPUS:84988600854
SN - 0730-2312
VL - 118
SP - 699
EP - 708
JO - Journal of Cellular Biochemistry
JF - Journal of Cellular Biochemistry
IS - 4
ER -