Functional logistic discrimination via regularized basis expansions

Yuko Araki, Sadanori Konishi, Shuichi Kawano, Hidetoshi Matsui

研究成果: ジャーナルへの寄稿学術誌査読

30 被引用数 (Scopus)

抄録

We introduce a functional logistic discrimination based on basis expansions with the help of regularization, which classifies functional data into several distinct groups. A crucial issue in model building process is the choice of regularization parameters. Choosing these parameters can be viewed as a model selection and evaluation problem. We derive a Bayesian model selection criterion for evaluating models estimated by the method of regularization in the context of functional logistic discrimination. Monte Carlo experiments are conducted to examine the efficiency of the proposed functional discrimination procedure. We also apply our procedure to the analysis of yeast cell cycle microarray data. The results show that our modeling procedure provides useful tools for classifying functions or curves.

本文言語英語
ページ(範囲)2944-2957
ページ数14
ジャーナルCommunications in Statistics - Theory and Methods
38
16-17
DOI
出版ステータス出版済み - 1月 2009

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率

フィンガープリント

「Functional logistic discrimination via regularized basis expansions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル