TY - JOUR
T1 - Fully coupled aero-hydrodynamic modelling of floating offshore wind turbines in nonlinear waves using a direct time-domain approach
AU - Deng, Sijia
AU - Liu, Yingyi
AU - Ning, Dezhi
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/11
Y1 - 2023/11
N2 - In standard operating conditions, a floating offshore wind turbine (FOWT) suffers from the combined action of nonlinear waves and wind. It is important to explore the effect of higher-order hydrodynamic loads induced by the nonlinear waves on its motion response. In this work, a fully coupled aero-hydrodynamic analysis method for FOWT is developed. The hydrodynamic part is based on the nonlinear potential flow theory and the perturbation approach, using a higher-order boundary element method in the time domain. Blade element momentum theory is applied to evaluate the aerodynamic load on the turbine rotor. The mooring system is modelled by the catenary theory. The developed method is verified against the published data of the NREL's 5-MW baseline wind turbine supported by the DeepCwind semi-submersible platform. The verifications are conducted stepwise in the following ways, including hydrodynamic wave excitation load, free-decay response, the load-displacement relationship of the mooring line, the steady-state response of the wind turbine, and fully coupled aero-hydrodynamic interaction. It is found that the nonlinear effect mainly influences the surge motion. The coupled configuration has little effect on the linear wave force and platform displacement but notably impacts the nonlinear wave force and displacement. The FOWT motion is found to be critical in changing the wave field, the maximum wave elevation position around the platform, and the nonlinear wave force acting on the floating platform. The results illustrate that the traditional indirect time-domain method using the Quadratic Transfer Function (QTF) based on assumed response cannot appropriately evaluate the nonlinear wave force of a FOWT in coupled motions. The results also reveal that nonlinear wave hydrodynamics is necessary to understand the motion response of a fully coupled FOWT.
AB - In standard operating conditions, a floating offshore wind turbine (FOWT) suffers from the combined action of nonlinear waves and wind. It is important to explore the effect of higher-order hydrodynamic loads induced by the nonlinear waves on its motion response. In this work, a fully coupled aero-hydrodynamic analysis method for FOWT is developed. The hydrodynamic part is based on the nonlinear potential flow theory and the perturbation approach, using a higher-order boundary element method in the time domain. Blade element momentum theory is applied to evaluate the aerodynamic load on the turbine rotor. The mooring system is modelled by the catenary theory. The developed method is verified against the published data of the NREL's 5-MW baseline wind turbine supported by the DeepCwind semi-submersible platform. The verifications are conducted stepwise in the following ways, including hydrodynamic wave excitation load, free-decay response, the load-displacement relationship of the mooring line, the steady-state response of the wind turbine, and fully coupled aero-hydrodynamic interaction. It is found that the nonlinear effect mainly influences the surge motion. The coupled configuration has little effect on the linear wave force and platform displacement but notably impacts the nonlinear wave force and displacement. The FOWT motion is found to be critical in changing the wave field, the maximum wave elevation position around the platform, and the nonlinear wave force acting on the floating platform. The results illustrate that the traditional indirect time-domain method using the Quadratic Transfer Function (QTF) based on assumed response cannot appropriately evaluate the nonlinear wave force of a FOWT in coupled motions. The results also reveal that nonlinear wave hydrodynamics is necessary to understand the motion response of a fully coupled FOWT.
KW - Floating offshore wind turbine
KW - Fully coupled numerical simulation
KW - Higher-order boundary element method
UR - http://www.scopus.com/inward/record.url?scp=85165622716&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85165622716&partnerID=8YFLogxK
U2 - 10.1016/j.renene.2023.119016
DO - 10.1016/j.renene.2023.119016
M3 - Article
AN - SCOPUS:85165622716
SN - 0960-1481
VL - 216
JO - Renewable Energy
JF - Renewable Energy
M1 - 119016
ER -