Forcing, Transition Algebras, and Calculi

Go Hashimoto, Daniel Găină, Ionuţ Ţuţu

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

We bring forward a logical system of transition algebras that enhances many-sorted first-order logic using features from dynamic logics. The sentences we consider include compositions, unions, and transitive closures of transition relations, which are treated similarly to the actions used in dynamic logics in order to define necessity and possibility operators. This leads to a higher degree of expressivity than that of many-sorted first-order logic. For example, one can finitely axiomatize both the finiteness and the reachability of models, neither of which are ordinarily possible in many-sorted first-order logic. We introduce syntactic entailment and study basic properties such as compactness and completeness, showing that the latter does not hold when standard finitary proof rules are used. Consequently, we define proof rules having both finite and countably infinite premises, and we provide conditions under which completeness can be proved. To that end, we generalize the forcing method introduced in model theory by Robinson from a single signature to a category of signatures, and we apply it to obtain a completeness result for signatures that are at most countable.

本文言語英語
ホスト出版物のタイトル51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
編集者Karl Bringmann, Martin Grohe, Gabriele Puppis, Ola Svensson
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959773225
DOI
出版ステータス出版済み - 7月 2024
イベント51st International Colloquium on Automata, Languages, and Programming, ICALP 2024 - Tallinn, エストニア
継続期間: 7月 8 20247月 12 2024

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
297
ISSN(印刷版)1868-8969

会議

会議51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
国/地域エストニア
CityTallinn
Period7/8/247/12/24

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア

フィンガープリント

「Forcing, Transition Algebras, and Calculi」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル