TY - GEN
T1 - Forcing, Transition Algebras, and Calculi
AU - Hashimoto, Go
AU - Găină, Daniel
AU - Ţuţu, Ionuţ
N1 - Publisher Copyright:
© Go Hashimoto, Daniel Găină, and Ionuţ Ţuţu.
PY - 2024/7
Y1 - 2024/7
N2 - We bring forward a logical system of transition algebras that enhances many-sorted first-order logic using features from dynamic logics. The sentences we consider include compositions, unions, and transitive closures of transition relations, which are treated similarly to the actions used in dynamic logics in order to define necessity and possibility operators. This leads to a higher degree of expressivity than that of many-sorted first-order logic. For example, one can finitely axiomatize both the finiteness and the reachability of models, neither of which are ordinarily possible in many-sorted first-order logic. We introduce syntactic entailment and study basic properties such as compactness and completeness, showing that the latter does not hold when standard finitary proof rules are used. Consequently, we define proof rules having both finite and countably infinite premises, and we provide conditions under which completeness can be proved. To that end, we generalize the forcing method introduced in model theory by Robinson from a single signature to a category of signatures, and we apply it to obtain a completeness result for signatures that are at most countable.
AB - We bring forward a logical system of transition algebras that enhances many-sorted first-order logic using features from dynamic logics. The sentences we consider include compositions, unions, and transitive closures of transition relations, which are treated similarly to the actions used in dynamic logics in order to define necessity and possibility operators. This leads to a higher degree of expressivity than that of many-sorted first-order logic. For example, one can finitely axiomatize both the finiteness and the reachability of models, neither of which are ordinarily possible in many-sorted first-order logic. We introduce syntactic entailment and study basic properties such as compactness and completeness, showing that the latter does not hold when standard finitary proof rules are used. Consequently, we define proof rules having both finite and countably infinite premises, and we provide conditions under which completeness can be proved. To that end, we generalize the forcing method introduced in model theory by Robinson from a single signature to a category of signatures, and we apply it to obtain a completeness result for signatures that are at most countable.
KW - Forcing
KW - algebraic specification
KW - calculi
KW - institution theory
KW - transition systems
UR - https://www.scopus.com/pages/publications/85198398964
UR - https://www.scopus.com/inward/citedby.url?scp=85198398964&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2024.143
DO - 10.4230/LIPIcs.ICALP.2024.143
M3 - Conference contribution
AN - SCOPUS:85198398964
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
A2 - Bringmann, Karl
A2 - Grohe, Martin
A2 - Puppis, Gabriele
A2 - Svensson, Ola
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
Y2 - 8 July 2024 through 12 July 2024
ER -