First-person Video Analysis for Evaluating Skill Level in the Humanitude Tender-Care Technique

Atsushi Nakazawa, Yu Mitsuzumi, Yuki Watanabe, Ryo Kurazume, Sakiko Yoshikawa, Miwako Honda

研究成果: ジャーナルへの寄稿学術誌査読

14 被引用数 (Scopus)

抄録

In this paper, we describe a wearable first-person video (FPV) analysis system for evaluating the skill levels of caregivers. This is a part of our project that aims to quantize and analyze the tender-care technique known as Humanitude by using wearable sensing and AI technology devices. Using our system, caregivers can evaluate and elevate their care levels by themselves. From the FPVs of care sessions taken by wearable cameras worn by caregivers, we obtained the 3D facial distance, pose and eye-contact states between caregivers and receivers by using facial landmark detection and deep neural network (DNN)-based eye contact detection. We applied statistical analysis to these features and developed algorithms that provide scores for tender-care skill. In experiments, we first evaluated the performance of our DNN-based eye contact detection by using eye contact datasets prepared from YouTube videos and FPVs that assume conversational scenes. We then performed skill evaluations by using Humanitude training scenes involving three novice caregivers, two Humanitude experts and seven middle-level students. The results showed that our eye contact detection outperformed existing methods and that our skill evaluations can estimate the care skill levels.

本文言語英語
ページ(範囲)103-118
ページ数16
ジャーナルJournal of Intelligent and Robotic Systems: Theory and Applications
98
1
DOI
出版ステータス出版済み - 1月 1 2019

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 制御およびシステム工学
  • 機械工学
  • 産業および生産工学
  • 人工知能
  • 電子工学および電気工学

フィンガープリント

「First-person Video Analysis for Evaluating Skill Level in the Humanitude Tender-Care Technique」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル